638 research outputs found

    AN EFFECTIVE REVERSIBLE DATA HIDING METHOD BASED ON PIXEL-VALUE-ORDERING

    Get PDF
    This paper presents a new effective reversible data hiding method based on pixel-value-ordering (iGePVO-K) which is improvement of a recent GePVO-K method that recently is considered as a PVO-used method having highest embedding capacity. In comparison with GePVO-K method, iGePVO-K has the following advantages. First, the embedding capacity of the new method is higher than that of GePVO-K method by using data embedding formulas reasonably and reducing the location map size. Second, for embedding data, in the new method, each pixel value is modified at most by one, while in GePVO-K method, each pixel value may be modified by two. In fact, in the GePVO-K method, the largest pixels are modified by two for embedding bits 1 and by one for bits 0. This is also true for the smallest pixels. Meanwhile, in the proposed method, the largest pixels are modified by one for embedding bits 1 and are unchanged if embedding bits 0. Therefore, the stego-image quality in proposed method is better than that in GePVO-K method. Theoretical analysis and experiment results show that the proposed method has higher embedding capacity and better stego image quality than GePVO-K method

    Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell

    Get PDF
    Lignin is a major component of lignocellulosic biomass. Although it is highly recalcitrant to break down, it is a very abundant natural source of valuable aromatic carbons. Thus, the effective valorisation of lignin is crucial for realising a sustainable biorefinery chain. Here, we report a compartmented photo-electro-biochemical system for unassisted, selective, and stable lignin valorisation, in which a TiO2 photocatalyst, an atomically dispersed Co-based electrocatalyst, and a biocatalyst (lignin peroxidase isozyme H8, horseradish peroxidase) are integrated, such that each system is separated using Nafion and cellulose membranes. This cell design enables lignin valorisation upon irradiation with sunlight without the need for any additional bias or sacrificial agent and allows the protection of the biocatalyst from enzymedamaging elements, such as reactive radicals, gas bubbles, and light. The photo-electrobiochemical system is able to catalyse lignin depolymerisation with a 98.7% selectivity and polymerisation with a 73.3% yield using coniferyl alcohol, a lignin monomer

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    High Rates of Hepatitis C Virus Reinfection and Spontaneous Clearance of Reinfection in People Who Inject Drugs: A Prospective Cohort Study

    Get PDF
    Hepatitis C virus reinfection and spontaneous clearance of reinfection were examined in a highly characterisedcohort of 188 people who inject drugs over a five-year period. Nine confirmed reinfections and 17 possiblereinfections were identified (confirmed reinfections were those genetically distinct from the previous infection andpossible reinfections were used to define instances where genetic differences between infections could not beassessed due to lack of availability of hepatitis C virus sequence data). The incidence of confirmed reinfection was28.8 per 100 person-years (PY), 95%CI: 15.0-55.4; the combined incidence of confirmed and possible reinfectionwas 24.6 per 100 PY (95%CI: 16.8-36.1). The hazard of hepatitis C reinfection was approximately double that ofprimary hepatitis C infection; it did not reach statistical significance in confirmed reinfections alone (hazard ratio [HR]:2.45, 95%CI: 0.87-6.86, p=0.089), but did in confirmed and possible hepatitis C reinfections combined (HR: 1.93,95%CI: 1.01-3.69, p=0.047) and after adjustment for the number of recent injecting partners and duration of injecting.In multivariable analysis, shorter duration of injection (HR: 0.91; 95%CI: 0.83-0.98; p=0.019) and multiple recentinjecting partners (HR: 3.12; 95%CI: 1.08-9.00, p=0.035) were independent predictors of possible and confirmedreinfection. Time to spontaneous clearance was shorter in confirmed reinfection (HR: 5.34, 95%CI: 1.67-17.03,p=0.005) and confirmed and possible reinfection (HR: 3.10, 95%CI: 1.10-8.76, p-value=0.033) than primary infection.Nonetheless, 50% of confirmed reinfections and 41% of confirmed or possible reinfections did not spontaneouslyclear.Conclusions: Hepatitis C reinfection and spontaneous clearance of hepatitis C reinfection were observed at highrates, suggesting partial acquired natural immunity to hepatitis C virus. Public health campaigns about the risks ofhepatitis C reinfection are required

    Fungal enzyme sets for plant polysaccharide degradation

    Get PDF
    Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families
    corecore